3.11.7 \(\int (a+i a \tan (e+f x))^{5/2} (c-i c \tan (e+f x))^{5/2} \, dx\) [1007]

Optimal. Leaf size=168 \[ -\frac {3 i a^{5/2} c^{5/2} \text {ArcTan}\left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{4 f}+\frac {3 a^2 c^2 \tan (e+f x) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{8 f}+\frac {a c \tan (e+f x) (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{3/2}}{4 f} \]

[Out]

-3/4*I*a^(5/2)*c^(5/2)*arctan(c^(1/2)*(a+I*a*tan(f*x+e))^(1/2)/a^(1/2)/(c-I*c*tan(f*x+e))^(1/2))/f+3/8*a^2*c^2
*(a+I*a*tan(f*x+e))^(1/2)*(c-I*c*tan(f*x+e))^(1/2)*tan(f*x+e)/f+1/4*a*c*tan(f*x+e)*(a+I*a*tan(f*x+e))^(3/2)*(c
-I*c*tan(f*x+e))^(3/2)/f

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 168, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3604, 38, 65, 223, 209} \begin {gather*} -\frac {3 i a^{5/2} c^{5/2} \text {ArcTan}\left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{4 f}+\frac {3 a^2 c^2 \tan (e+f x) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{8 f}+\frac {a c \tan (e+f x) (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{3/2}}{4 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])^(5/2)*(c - I*c*Tan[e + f*x])^(5/2),x]

[Out]

(((-3*I)/4)*a^(5/2)*c^(5/2)*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x]])])
/f + (3*a^2*c^2*Tan[e + f*x]*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])/(8*f) + (a*c*Tan[e + f*x]*
(a + I*a*Tan[e + f*x])^(3/2)*(c - I*c*Tan[e + f*x])^(3/2))/(4*f)

Rule 38

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[x*(a + b*x)^m*((c + d*x)^m/(2*m + 1))
, x] + Dist[2*a*c*(m/(2*m + 1)), Int[(a + b*x)^(m - 1)*(c + d*x)^(m - 1), x], x] /; FreeQ[{a, b, c, d}, x] &&
EqQ[b*c + a*d, 0] && IGtQ[m + 1/2, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3604

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[a*(c/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f,
m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int (a+i a \tan (e+f x))^{5/2} (c-i c \tan (e+f x))^{5/2} \, dx &=\frac {(a c) \text {Subst}\left (\int (a+i a x)^{3/2} (c-i c x)^{3/2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {a c \tan (e+f x) (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{3/2}}{4 f}+\frac {\left (3 a^2 c^2\right ) \text {Subst}\left (\int \sqrt {a+i a x} \sqrt {c-i c x} \, dx,x,\tan (e+f x)\right )}{4 f}\\ &=\frac {3 a^2 c^2 \tan (e+f x) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{8 f}+\frac {a c \tan (e+f x) (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{3/2}}{4 f}+\frac {\left (3 a^3 c^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x} \sqrt {c-i c x}} \, dx,x,\tan (e+f x)\right )}{8 f}\\ &=\frac {3 a^2 c^2 \tan (e+f x) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{8 f}+\frac {a c \tan (e+f x) (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{3/2}}{4 f}-\frac {\left (3 i a^2 c^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {2 c-\frac {c x^2}{a}}} \, dx,x,\sqrt {a+i a \tan (e+f x)}\right )}{4 f}\\ &=\frac {3 a^2 c^2 \tan (e+f x) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{8 f}+\frac {a c \tan (e+f x) (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{3/2}}{4 f}-\frac {\left (3 i a^2 c^3\right ) \text {Subst}\left (\int \frac {1}{1+\frac {c x^2}{a}} \, dx,x,\frac {\sqrt {a+i a \tan (e+f x)}}{\sqrt {c-i c \tan (e+f x)}}\right )}{4 f}\\ &=-\frac {3 i a^{5/2} c^{5/2} \tan ^{-1}\left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{4 f}+\frac {3 a^2 c^2 \tan (e+f x) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{8 f}+\frac {a c \tan (e+f x) (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{3/2}}{4 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 4.35, size = 110, normalized size = 0.65 \begin {gather*} -\frac {a^2 c^3 \sec ^3(e+f x) \left (24 \text {ArcTan}\left (e^{i (e+f x)}\right ) \cos ^4(e+f x)+11 i \sin (e+f x)+3 i \sin (3 (e+f x))\right ) (i+\tan (e+f x)) \sqrt {a+i a \tan (e+f x)}}{32 f \sqrt {c-i c \tan (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[e + f*x])^(5/2)*(c - I*c*Tan[e + f*x])^(5/2),x]

[Out]

-1/32*(a^2*c^3*Sec[e + f*x]^3*(24*ArcTan[E^(I*(e + f*x))]*Cos[e + f*x]^4 + (11*I)*Sin[e + f*x] + (3*I)*Sin[3*(
e + f*x)])*(I + Tan[e + f*x])*Sqrt[a + I*a*Tan[e + f*x]])/(f*Sqrt[c - I*c*Tan[e + f*x]])

________________________________________________________________________________________

Maple [A]
time = 0.34, size = 164, normalized size = 0.98

method result size
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, a^{2} c^{2} \left (2 \sqrt {a c}\, \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \left (\tan ^{3}\left (f x +e \right )\right )+3 a c \ln \left (\frac {c a \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}}{\sqrt {a c}}\right )+5 \tan \left (f x +e \right ) \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}\right )}{8 f \sqrt {a c}\, \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}}\) \(164\)
default \(\frac {\sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, a^{2} c^{2} \left (2 \sqrt {a c}\, \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \left (\tan ^{3}\left (f x +e \right )\right )+3 a c \ln \left (\frac {c a \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}}{\sqrt {a c}}\right )+5 \tan \left (f x +e \right ) \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}\right )}{8 f \sqrt {a c}\, \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}}\) \(164\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))^(5/2)*(c-I*c*tan(f*x+e))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/8/f*(a*(1+I*tan(f*x+e)))^(1/2)*(-c*(I*tan(f*x+e)-1))^(1/2)*a^2*c^2*(2*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/
2)*tan(f*x+e)^3+3*a*c*ln((c*a*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))+5*tan(f*x+e)*(
a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2)/(a*c*(1+tan(f*x+e)^2))^(1/2)

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1249 vs. \(2 (136) = 272\).
time = 0.79, size = 1249, normalized size = 7.43 \begin {gather*} -\frac {{\left (12 \, a^{2} c^{2} \cos \left (\frac {7}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 44 \, a^{2} c^{2} \cos \left (\frac {5}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) - 44 \, a^{2} c^{2} \cos \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) - 12 \, a^{2} c^{2} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 12 i \, a^{2} c^{2} \sin \left (\frac {7}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 44 i \, a^{2} c^{2} \sin \left (\frac {5}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) - 44 i \, a^{2} c^{2} \sin \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) - 12 i \, a^{2} c^{2} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 6 \, {\left (a^{2} c^{2} \cos \left (8 \, f x + 8 \, e\right ) + 4 \, a^{2} c^{2} \cos \left (6 \, f x + 6 \, e\right ) + 6 \, a^{2} c^{2} \cos \left (4 \, f x + 4 \, e\right ) + 4 \, a^{2} c^{2} \cos \left (2 \, f x + 2 \, e\right ) + i \, a^{2} c^{2} \sin \left (8 \, f x + 8 \, e\right ) + 4 i \, a^{2} c^{2} \sin \left (6 \, f x + 6 \, e\right ) + 6 i \, a^{2} c^{2} \sin \left (4 \, f x + 4 \, e\right ) + 4 i \, a^{2} c^{2} \sin \left (2 \, f x + 2 \, e\right ) + a^{2} c^{2}\right )} \arctan \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ), \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 1\right ) + 6 \, {\left (a^{2} c^{2} \cos \left (8 \, f x + 8 \, e\right ) + 4 \, a^{2} c^{2} \cos \left (6 \, f x + 6 \, e\right ) + 6 \, a^{2} c^{2} \cos \left (4 \, f x + 4 \, e\right ) + 4 \, a^{2} c^{2} \cos \left (2 \, f x + 2 \, e\right ) + i \, a^{2} c^{2} \sin \left (8 \, f x + 8 \, e\right ) + 4 i \, a^{2} c^{2} \sin \left (6 \, f x + 6 \, e\right ) + 6 i \, a^{2} c^{2} \sin \left (4 \, f x + 4 \, e\right ) + 4 i \, a^{2} c^{2} \sin \left (2 \, f x + 2 \, e\right ) + a^{2} c^{2}\right )} \arctan \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ), -\sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 1\right ) + 3 \, {\left (i \, a^{2} c^{2} \cos \left (8 \, f x + 8 \, e\right ) + 4 i \, a^{2} c^{2} \cos \left (6 \, f x + 6 \, e\right ) + 6 i \, a^{2} c^{2} \cos \left (4 \, f x + 4 \, e\right ) + 4 i \, a^{2} c^{2} \cos \left (2 \, f x + 2 \, e\right ) - a^{2} c^{2} \sin \left (8 \, f x + 8 \, e\right ) - 4 \, a^{2} c^{2} \sin \left (6 \, f x + 6 \, e\right ) - 6 \, a^{2} c^{2} \sin \left (4 \, f x + 4 \, e\right ) - 4 \, a^{2} c^{2} \sin \left (2 \, f x + 2 \, e\right ) + i \, a^{2} c^{2}\right )} \log \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 1\right ) + 3 \, {\left (-i \, a^{2} c^{2} \cos \left (8 \, f x + 8 \, e\right ) - 4 i \, a^{2} c^{2} \cos \left (6 \, f x + 6 \, e\right ) - 6 i \, a^{2} c^{2} \cos \left (4 \, f x + 4 \, e\right ) - 4 i \, a^{2} c^{2} \cos \left (2 \, f x + 2 \, e\right ) + a^{2} c^{2} \sin \left (8 \, f x + 8 \, e\right ) + 4 \, a^{2} c^{2} \sin \left (6 \, f x + 6 \, e\right ) + 6 \, a^{2} c^{2} \sin \left (4 \, f x + 4 \, e\right ) + 4 \, a^{2} c^{2} \sin \left (2 \, f x + 2 \, e\right ) - i \, a^{2} c^{2}\right )} \log \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )^{2} - 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 1\right )\right )} \sqrt {a} \sqrt {c}}{-16 \, f {\left (i \, \cos \left (8 \, f x + 8 \, e\right ) + 4 i \, \cos \left (6 \, f x + 6 \, e\right ) + 6 i \, \cos \left (4 \, f x + 4 \, e\right ) + 4 i \, \cos \left (2 \, f x + 2 \, e\right ) - \sin \left (8 \, f x + 8 \, e\right ) - 4 \, \sin \left (6 \, f x + 6 \, e\right ) - 6 \, \sin \left (4 \, f x + 4 \, e\right ) - 4 \, \sin \left (2 \, f x + 2 \, e\right ) + i\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(5/2)*(c-I*c*tan(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

-(12*a^2*c^2*cos(7/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 44*a^2*c^2*cos(5/2*arctan2(sin(2*f*x + 2*e
), cos(2*f*x + 2*e))) - 44*a^2*c^2*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 12*a^2*c^2*cos(1/2*a
rctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 12*I*a^2*c^2*sin(7/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))
) + 44*I*a^2*c^2*sin(5/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 44*I*a^2*c^2*sin(3/2*arctan2(sin(2*f*x
 + 2*e), cos(2*f*x + 2*e))) - 12*I*a^2*c^2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 6*(a^2*c^2*c
os(8*f*x + 8*e) + 4*a^2*c^2*cos(6*f*x + 6*e) + 6*a^2*c^2*cos(4*f*x + 4*e) + 4*a^2*c^2*cos(2*f*x + 2*e) + I*a^2
*c^2*sin(8*f*x + 8*e) + 4*I*a^2*c^2*sin(6*f*x + 6*e) + 6*I*a^2*c^2*sin(4*f*x + 4*e) + 4*I*a^2*c^2*sin(2*f*x +
2*e) + a^2*c^2)*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), sin(1/2*arctan2(sin(2*f*x + 2*e)
, cos(2*f*x + 2*e))) + 1) + 6*(a^2*c^2*cos(8*f*x + 8*e) + 4*a^2*c^2*cos(6*f*x + 6*e) + 6*a^2*c^2*cos(4*f*x + 4
*e) + 4*a^2*c^2*cos(2*f*x + 2*e) + I*a^2*c^2*sin(8*f*x + 8*e) + 4*I*a^2*c^2*sin(6*f*x + 6*e) + 6*I*a^2*c^2*sin
(4*f*x + 4*e) + 4*I*a^2*c^2*sin(2*f*x + 2*e) + a^2*c^2)*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x +
2*e))), -sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) + 3*(I*a^2*c^2*cos(8*f*x + 8*e) + 4*I*a^2*c
^2*cos(6*f*x + 6*e) + 6*I*a^2*c^2*cos(4*f*x + 4*e) + 4*I*a^2*c^2*cos(2*f*x + 2*e) - a^2*c^2*sin(8*f*x + 8*e) -
 4*a^2*c^2*sin(6*f*x + 6*e) - 6*a^2*c^2*sin(4*f*x + 4*e) - 4*a^2*c^2*sin(2*f*x + 2*e) + I*a^2*c^2)*log(cos(1/2
*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 2*s
in(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) + 3*(-I*a^2*c^2*cos(8*f*x + 8*e) - 4*I*a^2*c^2*cos(6*
f*x + 6*e) - 6*I*a^2*c^2*cos(4*f*x + 4*e) - 4*I*a^2*c^2*cos(2*f*x + 2*e) + a^2*c^2*sin(8*f*x + 8*e) + 4*a^2*c^
2*sin(6*f*x + 6*e) + 6*a^2*c^2*sin(4*f*x + 4*e) + 4*a^2*c^2*sin(2*f*x + 2*e) - I*a^2*c^2)*log(cos(1/2*arctan2(
sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 - 2*sin(1/2*ar
ctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1))*sqrt(a)*sqrt(c)/(f*(-16*I*cos(8*f*x + 8*e) - 64*I*cos(6*f*x +
 6*e) - 96*I*cos(4*f*x + 4*e) - 64*I*cos(2*f*x + 2*e) + 16*sin(8*f*x + 8*e) + 64*sin(6*f*x + 6*e) + 96*sin(4*f
*x + 4*e) + 64*sin(2*f*x + 2*e) - 16*I))

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 534 vs. \(2 (136) = 272\).
time = 1.24, size = 534, normalized size = 3.18 \begin {gather*} \frac {3 \, \sqrt {\frac {a^{5} c^{5}}{f^{2}}} {\left (f e^{\left (6 i \, f x + 6 i \, e\right )} + 3 \, f e^{\left (4 i \, f x + 4 i \, e\right )} + 3 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \log \left (\frac {4 \, {\left (2 \, {\left (a^{2} c^{2} e^{\left (3 i \, f x + 3 i \, e\right )} + a^{2} c^{2} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} - \sqrt {\frac {a^{5} c^{5}}{f^{2}}} {\left (i \, f e^{\left (2 i \, f x + 2 i \, e\right )} - i \, f\right )}\right )}}{a^{2} c^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + a^{2} c^{2}}\right ) - 3 \, \sqrt {\frac {a^{5} c^{5}}{f^{2}}} {\left (f e^{\left (6 i \, f x + 6 i \, e\right )} + 3 \, f e^{\left (4 i \, f x + 4 i \, e\right )} + 3 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \log \left (\frac {4 \, {\left (2 \, {\left (a^{2} c^{2} e^{\left (3 i \, f x + 3 i \, e\right )} + a^{2} c^{2} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} - \sqrt {\frac {a^{5} c^{5}}{f^{2}}} {\left (-i \, f e^{\left (2 i \, f x + 2 i \, e\right )} + i \, f\right )}\right )}}{a^{2} c^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + a^{2} c^{2}}\right ) + 4 \, {\left (-3 i \, a^{2} c^{2} e^{\left (7 i \, f x + 7 i \, e\right )} - 11 i \, a^{2} c^{2} e^{\left (5 i \, f x + 5 i \, e\right )} + 11 i \, a^{2} c^{2} e^{\left (3 i \, f x + 3 i \, e\right )} + 3 i \, a^{2} c^{2} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{16 \, {\left (f e^{\left (6 i \, f x + 6 i \, e\right )} + 3 \, f e^{\left (4 i \, f x + 4 i \, e\right )} + 3 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(5/2)*(c-I*c*tan(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

1/16*(3*sqrt(a^5*c^5/f^2)*(f*e^(6*I*f*x + 6*I*e) + 3*f*e^(4*I*f*x + 4*I*e) + 3*f*e^(2*I*f*x + 2*I*e) + f)*log(
4*(2*(a^2*c^2*e^(3*I*f*x + 3*I*e) + a^2*c^2*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*
f*x + 2*I*e) + 1)) - sqrt(a^5*c^5/f^2)*(I*f*e^(2*I*f*x + 2*I*e) - I*f))/(a^2*c^2*e^(2*I*f*x + 2*I*e) + a^2*c^2
)) - 3*sqrt(a^5*c^5/f^2)*(f*e^(6*I*f*x + 6*I*e) + 3*f*e^(4*I*f*x + 4*I*e) + 3*f*e^(2*I*f*x + 2*I*e) + f)*log(4
*(2*(a^2*c^2*e^(3*I*f*x + 3*I*e) + a^2*c^2*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f
*x + 2*I*e) + 1)) - sqrt(a^5*c^5/f^2)*(-I*f*e^(2*I*f*x + 2*I*e) + I*f))/(a^2*c^2*e^(2*I*f*x + 2*I*e) + a^2*c^2
)) + 4*(-3*I*a^2*c^2*e^(7*I*f*x + 7*I*e) - 11*I*a^2*c^2*e^(5*I*f*x + 5*I*e) + 11*I*a^2*c^2*e^(3*I*f*x + 3*I*e)
 + 3*I*a^2*c^2*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)))/(f*e^(6*I
*f*x + 6*I*e) + 3*f*e^(4*I*f*x + 4*I*e) + 3*f*e^(2*I*f*x + 2*I*e) + f)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))**(5/2)*(c-I*c*tan(f*x+e))**(5/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3877 deep

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(5/2)*(c-I*c*tan(f*x+e))^(5/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{5/2}\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{5/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(e + f*x)*1i)^(5/2)*(c - c*tan(e + f*x)*1i)^(5/2),x)

[Out]

int((a + a*tan(e + f*x)*1i)^(5/2)*(c - c*tan(e + f*x)*1i)^(5/2), x)

________________________________________________________________________________________